
MongoDB for Beginners

Por onde começar a se libertar das limitações do mundo
relacional!!!

Mario Barduchi
mario.barduchi@dell.com

Sr. Database Systems Engineer – LATAM

June, 2023

mailto:mario.barduchi@dell.com

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Who am I?

➢ I’ve worked in IT for more than 23 years. I’m Oracle

Database Administrator since 2003. MongoDB enthusiast

since 2022.

➢ Sr. Database Systems Engineer at Dell Technologies.

➢ B.S. in Software Engineering from Metodista University. I

completed a graduation course in Oracle Database

Administration from FIAP. Currently, I'm pursuing an MBA

in Cloud Architecture and Engineering from FIAP.

➢ I’m Oracle ACE Associate since 2023. I’m the coordinator

and organizer of DBA Brasil Data & Cloud and I’m part of

GUOB's board.

Oracle ACELinkdIn DBTips

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Agenda

1

3

SQL X NoSQL

Data Model

Logical Structures 2

4Replication

5 Sharding

6CRUD Operations

7 Best Practices

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

SQL X NoSQL

SQL

SQL is relational. SQL uses tables and indexes structure for

data storage.

It's based on a data model that organizes information into rows

and columns within tables.

Tables has relationship with each other using Primary Keys

and Foreingn Keys.

Transational Databases:

NoSQL

NoSQL doesn't use a table model. NoSQL uses data models

based on:

NoSQL is designed for scalability, high availability and

flexibility.

MongoDB uses BSON (Binary JSON). It’s a binary

representation to store data in JSON format, optimized for

speed, space, and efficiency.

.

Redis

Oracle NoSQL
Apache Cassandra

Google Bigtable

Neo4j

Amazon Neptune

MongoDB

Fonte: NoSQL Data Models Types: Concepts

https://vitalflux.com/nosql-data-models-concepts-examples/#:~:text=NoSQL%20data%20models%20can%20be,of%20applications%20or%20use%20cases.

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

SQL X NoSQL

Pros X Cons

Fonte: NoSQL vs SQL- 4 Reasons Why NoSQL is better for Big Data applications

Pros of SQL Cons of SQL

Structured data model for handling

data with defined relationships.

Less flexible and requires a

predefined schema/data structure.

Mature technology with a wide range

of tools and support to manage data.

May not be suitable for specific data

types, such as unstructured or semi-

structured data

Strong community support and

established best practices.

Limited scalability compared to

NoSQL.

ACID compliance ensures data

consistency and accuracy.

Can be slower than NoSQL for large-

scale data processing.

Strong data security and user access

controls.

Can be more complex and time-

consuming to set up and maintain.

Pros of NoSQL Cons of NoSQL

Flexible data models for handling

unstructured data.

Not as mature as SQL, lacking

standardization across different

NoSQL databases.

Horizontal scalability and distributed

database computing capabilities.

Limited query functionality to

manage data compared to SQL.

Easier to maintain compared to SQL.
Less suited for handling complex,

interrelated data relationships.

Highly scalable and can handle large

volumes of data.

Not ideal for complex transactions

that require complex (atomicity,

consistency, isolation, durability)

compliance.

Ability to handle multiple data

formats: JSON, key-value, etc.

Limited reporting and analysis

capabilities compared to SQL.

https://www.projectpro.io/article/nosql-vs-sql-4-reasons-why-nosql-is-better-for-big-data-applications/86

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Logical Structures

Columns

Rows

Tables

Database

Fields

Documents

Collections

Database

Transacional MongoDB

A name-value pair in a document. A document
has zero or more fields. Fields are similar to
columns in relational databases.

A record in a collection. The basic unit of data.
Documents are similar to JSON objects. In
MongoDB, we use BSON.

A group of documents. A collection is the similar
of an RDBMS table. Collections don’t enforce a
schema. Documents within a collection can have
different fields.

A physical container for collections. Each
database gets its own set of files on the file
system.

Fonte: Glossary — MongoDB Manual

https://www.mongodb.com/docs/manual/reference/glossary/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Data Model

When designing a relational schema:

✓ Data model their schema independent of

queries.

✓ Normalize (typically in 3rd normal form).

✓ The normalization will split up your data into

tables, so you don't duplicate data.

Example:

SELECT

u.id, u.first_name, u.cell, u.city,

c.model, c.year

FROM

users u

JOIN cars c ON c.user_id = u.id

WHERE u.id = 1

ORDER BY 1;
Fonte: MongoDB Schema Design Best Practices | MongoDB

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Data Model

When you are designing your MongoDB schema, the only thing

that matters is that you design a schema that will work well

for your application.

When designing a schema, we want to take into consideration the

following:

✓ No formal process

✓ No algorithms

✓ No rules

✓ Store the data

✓ Provide good query performance

✓ Require minimum amount of hardware

Fonte: MongoDB Schema Design Best Practices | MongoDB

{

"first_name": "Paul",

"surname": "Miller",

"cell": "447557505611",

"city": "London",

"location": [45.123, 47.232],

"profession": ["banking", "finance", "trader"],

"cars": [

{

"model": "Bentley",

"year": 1973

},

{

"model": "Rolls Royce",

"year": 1965

}

]

}

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Data Model

Embedding vs. Referencing

Fonte: MongoDB Schema Design Best Practices | MongoDB

Embedding
You can either embed that data directly.

Pros of Embedding Cons of Embedding

You can retrieve all relevant information in

a single query.

Large documents mean more overhead if

most fields are not relevant.

Avoid implementing joins in application

code or using $lookup.

You can increase query performance by

limiting the size of the documents.

Update related information as a single

atomic operation. By default, all CRUD

operations on a single document are ACID

compliant.

There is a 16MB document size limit in

MongoDB. If you are embedding too

much data inside a single document, you

could potentially hit this limit.

However, if you need a transaction across

multiple operations, you can use the

transaction operator.

You need to use Upsert (Find + Update) to

change the document or to put new

information about cars or profession.

db.users.insertOne(

{ "_id": 1,

"name": "Mario Barduchi",

"addresses": [

{

"type": "Home",

"address_1": "288 Guarani Street",

"address_2": "Vila Tupi",

"city": "SBC",

"zip_code": "09760100"

},

{

"type": "Work",

"address_1": "1488 Verbo Divino Street",

"address_2": "Santo Amaro",

"city": "SP",

"zip_code": "05060100"

}

]})

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Data Model

Embedding vs. Referencing

Fonte: MongoDB Schema Design Best Practices | MongoDB

Pros of Referencing Cons of Referencing

By splitting up data, you will have smaller

documents.

In order to retrieve all the data in the

referenced documents, a minimum of two

queries or $lookup required to retrieve all

the information.

Less likely to reach 16MB per document

limit.
More complexity in the Data Model.

Infrequently accessed information not

needed on every query.
More risks for ACID non-compliance.

Reduce the amount of duplication of

data. However, it's important to note that

data duplication should not be avoided if

it results in a better schema.

Referencing
You can reference another piece of data using

the $lookup operator (similar to a JOIN).

db.address2.insertOne({

"_id": 1000, "type": "Home",

"address_1": "288 Guarani Street",

"address_2": "Vila Tupi",

"city": "SBC", "zip_code": "09760100"

})

db.address2.insertOne({

"_id": 1001, "type": "Work",

"address_1": "1488 Verbo Divino Street",

"address_2": "Santo Amaro",

"city": "SP", "zip_code": "05060100"

})

db.users2.insertOne({

"_id": 1,

"name": "Mario Barduchi",

"addresses":[1000, 1001]

})

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Modelagem de dados

One-to-One (Prefer key value pairs within the doc)

{ "_id": "ObjectId('AAA')",

"name": "Joe Karlsson",

"cpf": "999.999.999-01"

}

One-to-Few (Prefer embedding for one-to-few
Relationships)

{ "_id": "ObjectId('XXX')",

"name": "Mario Barduchi",

“cpf": "999.999.999-01"

"addresses": [

{ "type": "Home", "city": "SBC"},

{ "type": "Work", "city": "SP" }]

}

One-to-Many (Prefer embedding)
Needing to access an object on its own is a compelling reason not

to embed it.

Avoid joins/lookups, but don't be afraid to use if they can provide a

better schema design.

Product

{ "name": "Lamborghini Sián FKP 37 42115 | Technic",

"manufacturer": "Lego Inc",

"catalog_number": "9999",

"parts": ["ObjectID('XXX')", "ObjectID('ZZZ')", "..."]}

Parts

{ "_id" : "ObjectID('XXX')",

"partno" : "aaa-123-bbb",

"name" : "Block A",

"qty": "107",

"cost": "0.37",

"price":"1.00"}

Fonte: MongoDB Schema Design Best Practices | MongoDB

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Modelagem de dados

One-to-Squillions (Prefer Referencing)
Tracking data within an unbounded array is hard,

since we could potentially hit that 16MB limit.

So, instead of tracking the relationship between

the host and the message in the host document,

we can change the order. By storing the data in

the message, we no longer need to worry about an

unbounded array.

Hosts

{ "_id": ObjectID(“XXXX"),

"name": “mario.barduchi.com",

"ipaddr": “999.99.99.99"}

Log Message

{ "time": ISODate("2013-06-11T09:42:41.382Z"),

"message": “DBA Brasil is on fire!",

"host": ObjectID(“XXXX")}

Many-to-Many (Prefer Referencing)

Users

{ "_id": ObjectID("AAF1"),

"name": "Kate Monster",

"tasks": [ObjectID("ADF9"), ObjectID("AE02"), ObjectID(“…")]

}

Tasks

{ "_id": ObjectID("ADF9"),

"description": "Write blog post about MongoDB schema design",

"due_date": ISODate("2014-04-01"),

"owners": [ObjectID("AAF1"), ObjectID("BB3G")]

}

{ "_id": ObjectID("AE02"),

"description": "Write blog post about MongoDB schema design",

"due_date": ISODate("2014-04-01"),

"owners": [ObjectID("AAF1"), ObjectID("BB3G")]

}
Fonte: MongoDB Schema Design Best Practices | MongoDB

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Replication

Replication increases data availability and reliability.

Multiple copies of data maintained in Replica Sets using
application level native replication.

A Replica Set is a fully self-healing Shard.

A Replica Set can have up to 50 members, but only 7 voting
members. If the replica set already has 7 voting members,
additional members must be non-voting members.

When Primary fails, Secondary nodes “votes” to select primary

• 10-30 seconds to declare primary inaccessible

• 10-30 seconds for election (cluster unavailable for
Writes)

Client Application Driver

Primary

Secondary Secondary

Heartbeat

Replication Replication

Writes Reads

Fonte: What Is Replication In MongoDB? | MongoDB and Replica Set Deployment Architectures

https://www.mongodb.com/basics/replication#:~:text=are%20properly%20replicated.-,What%20is%20the%20difference%20between%20replication%20and%20sharding%3F,servers%20using%20a%20shard%20key.
https://www.mongodb.com/docs/manual/core/replica-set-architectures/#:~:text=Maximum%20Number%20of%20Voting%20Members,must%20be%20non%2Dvoting%20members.

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Sharding

Horizontal scale-out with Sharding
technique.

Distributes data across multiple physical
partitions or Shards.

Data automatically balanced within
Sharded Clusters.

Multiple Sharding options:

Ranges, Hashes, Zones.

Config

Server

1TB

1TB

Shard A

Collection 1

Collection 1

Collection 2

1TB

256GB 256GB 256GB 256GB

Shard A Shard B Shard C Shard D

Collection 2

Fonte: Sharding — MongoDB Manual

https://www.mongodb.com/docs/manual/sharding/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Sharding + Replication

MongoDB

Mongod

(Primary)

rs0

DB: ZZ

Collection: XX

Shard1

Config Servers

Mongod

Mongod

Mongod

Mongod

(Secondary)

rs0

DB: ZZ

Collection: XX

Mongod

(Secondary)

rs0

DB: ZZ

Collection: XX

Mongod

(Primary)

rs1

DB: ZZ

Collection: XX

Shard2

Mongod

(Secondary)

rs1

DB: ZZ

Collection: XX

Mongod

(Secondary)

rs1

DB: ZZ

Collection: XX

Mongod

(Primary)

rs2

DB: ZZ

Collection: XX

Shard3

Mongod

(Secondary)

rs2

DB: ZZ

Collection: XX

Mongod

(Secondary)

rs2

DB: ZZ

Collection: XX

Response

Request

Clients

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

CRUD operations

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

CRUD operations

Create

use dbabrasil

db.movies.insertOne

(

{

codigo: 1, trilogy: "Harry Potter", sequence: "The Philosophers Stone", year: "2001“

}

)

db.movies.insertMany

(

[

{codigo: 2, trilogy: "Harry Potter", sequence: "Harry Potter and the Chamber of Secrets", year: "2002"},

{codigo: 3, trilogy: "Harry Potter", sequence: "Harry Potter and the Prisoner of Azkaban", year: "2004"},

{codigo: 4, trilogy: "Harry Potter", sequence: "Harry Potter and the Goblet of Fire", year: "2005"},

{codigo: 5, trilogy: "Harry Potter", sequence: "Harry Potter and the Order of the Phoenix", year: "2007"}

]

)

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

CRUD operations

Create

db.movies3.insertOne(

{codigo: 1,

trilogy: "Harry Potter",

sequence: [

{film: "The Philosophers Stone", year: "2001"},

{film: "Harry Potter and the Chamber of Secrets", year: "2002"},

{film: "Harry Potter and the Prisoner of Azkaban", year: "2004"},

{film: "Harry Potter and the Goblet of Fire", year: "2005"},

{film: "Harry Potter and the Order of the Phoenix", year: "2007"},

{film: "Harry Potter and the Half-Blood Prince", year: "2009"},

{film: "Harry Potter and the Deathly Hallows P1", year: "2010"},

{film: "Harry Potter and the Deathly Hallows P2", year: "2011"}

]

})

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

CRUD operations

Read

-- List all

db.movies.find().pretty()

-- Find the first document matching the object

db.movies.findOne({trilogy: "Transformers"})

-- Limit the number of documents

db.movies.find().limit(3)

-- Count the number of documents

db.movies.find().count()

-- Where trilogy="Transformers"

db.movies.find({trilogy: " Transformers "})

-- List fields _id, codigo,year

db.movies.find({trilogy:"Transformers"}, { codigo:1,year:1})

-- List documents with codigo are greather then 5

db.movies.find({ codigo: { $gt: 5 } },{ _id: 0, codigo: 1, year: 1, name: {$concat: ["$trilogy"," - ","$sequence"]} })

-- List documents with codigo are between 5 and 12, Concat Trilogy with Sequence and Sort - Year Desc, Name Asc

db.movies.find({ codigo: { $gt: 5, $lt: 12 } },{codigo: 1, year: 1, name: {$concat: ["$trilogy"," - ","$sequence"]} }).sort({"year": -1,

"name": 1 })

-- List documents where sequence.year = 2009

db.movies3.find({ " sequence.year ": '2009' });

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

CRUD operations

Update

db.movies.find({ codigo: { $gte: 97 } }).pretty()

db.movies.updateMany(

{ codigo: { $gte: 97 } } ,{ $set: { year: 2030 } }

)

db.movies.find({ codigo: { $gte: 98 } }).pretty()

db.movies.updateMany(

{ codigo: 98 } ,{ $set: { year: 2027 } }

)

db.movies3.update(

{ codigo: 90, "sequence.film": "FILM 2“ },

{ $set: {"sequence.$.year": "2029"} })

db.movies3.updateMany(

{ "sequence.year": "2009“ },

{ $set: {"sequence.$.year": "2049“ } })

Delete

db.movies.deleteOne({ codigo: 98 })

db.movies.deleteMany({ trilogy: 'Procurando Nemo' })

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Understand Schema Differences Between Relational and Document-based Databases - Data modeling

✓ Understand your application’s query patterns to produces more efficient queries, increases the throughput of insert and

update operations, and more effectively distributes your workload across a sharded cluster.

✓ Design your data model. Embed Your Data Instead of Relying on Joins.

✓ Select the appropriate indexes.

✓ Just because MongoDB has a flexible schema does not mean you can ignore schema design!

✓ A major advantage of JSON documents is that you have the flexibility.

Memory Sizing: Ensure your working set fits in RAM

✓ MongoDB performs best when the application’s working set (indexes and most frequently accessed data) fits in

memory.

✓ RAM size is the most important factor for instance sizing.

✓ If price/performance is more of a priority over performance alone, then using fast SSDs to complement smaller

amounts of RAM is a viable design choice.

✓ When the application’s working set fits in RAM, read activity from disk will be low.

Fonte: Performance Best Practices: MongoDB Data Modeling and Memory Sizing | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-mongodb-data-modeling-and-memory-sizing

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Query patterns and profiling

✓ Avoid creating large, unbounded documents.

✓ Issue updates to only modify fields that have changed.

✓ Update multiple array elements in a single operation.

✓ Profile queries with the explain plan:

✓ Which indexes were used.

✓ Whether the query was covered by the index or not.

✓ Whether an in-memory sort was performed, which indicates an index would be beneficial.

✓ The number of index entries scanned.

✓ The number of documents returned, and the number read.

✓ How long the query took to resolve in milliseconds.

✓ Which alternative query plans were rejected (when using the allPlansExecution mode).

Fonte: Performance Best Practices: Query Patterns and Profiling | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-query-patterns-and-profiling

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Indexing

✓ Use Compound Indexes (Compound indexes are indexes composed of several different fields).

✓ Follow the ESR rule for compound indexes:

✓ Add those fields against which "Equality" queries are run.

✓ The next fields to be indexed should reflect the "Sort" order of the query.

✓ The last fields represent the "Range" of data to be accessed.

✓ Use Covered Queries When Possible

Covered queries return results from an index directly without having to access the source documents and are

therefore very efficient. For a query to be covered all the fields needed for filtering, sorting and/or being returned to

the client must be present in an index.

✓ Use Caution When Considering Indexes on Low-Cardinality Fields.

✓ Eliminate Unnecessary Indexes.

✓ Use Partial Indexes.

✓ Take Advantage of Multi-Key Indexes for Querying Arrays

If query patterns require accessing individual array elements, use a multi-key index.

Fonte: Performance Best Practices: Indexing | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-indexing

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Sharding

✓ Sharding for Horizontal Scale Out

✓ Sharding Strategies

✓ Ranged Sharding

✓ Hashed Sharding

✓ Zoned Sharding

✓ Use Hashed-Based Sharding When Appropriate

Transactions and read/write concerns

✓ The Arrival of Multi-Document ACID Transactions

✓ Starting with MongoDB 4.0, support was added for multi-document ACID transactions

✓ Best Practices for Multi-Document Transactions

✓ Transaction runtime limit (Default 60 seconds)

✓ Number of operations in a transaction (As a best practice, no more than 1,000 documents)

✓ Distributed, multi-shard transactions

✓ Choose the Appropriate Write Guarantees

Write Acknowledged (Default), Journal Acknowledged, Replica Acknowledged and Majority

Fonte: Performance Best Practices: Sharding | MongoDB and Performance Best Practices: Transactions and Read / Write Concerns | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-sharding
https://www.mongodb.com/blog/post/performance-best-practices-transactions-and-read-write-concerns

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Hardware and OS configuration

✓ Run on Supported Platforms.

✓ Use Multiple CPU Cores

✓ Dedicate Each Server to a Single Role in the System

✓ Configuring the WiredTiger Cache (WiredTiger storage engine’s internal cache)

✓ Use Multiple Query Routers

✓ Use Interleave Policy on Non-Uniform Memory Access (NUMA) Architecture

✓ Storage and Disk I/O

✓ Use NVME for IO Intensive Applications

✓ Use MongoDB’s Default Compression for Storage and I/O-Intensive Workloads

✓ Configuring readahead

✓ Use XFS File Systems; Avoid EXT4

✓ Disable Access Time Settings

✓ Disable Transparent Hugepages

Fonte: Performance Best Practices: Hardware and OS Configuration | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-hardware-and-os-configuration

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Best Practices

Benchmarking

✓ Use Multiple Parallel Threads

✓ Use Bulk Writes

Similarly, to reduce the overhead from network round trips, you can use bulk writes to load (or update) many

documents in one batch.

✓ Consider the Ordering of Your Shard Key.

✓ If you configured range based sharding, and load data sorted by the shard key, then all inserts at a given time will

necessarily have to go to the same chunk and same shard.

✓ A chunk consists of a range of sharded data.

✓ Disable the Balancer for Bulk Loading.

✓ Prime the System for Several Minutes.

✓ Use Connection Pools.

✓ Monitor Everything.

Fonte: Performance Best Practices: Benchmarking | MongoDB

https://www.mongodb.com/blog/post/performance-best-practices-benchmarking

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

References & Study

MongoDB Docs

MongoDB Documentation

MongoDB University

MongoDB Courses and Trainings | MongoDB University

MongoDB Atlas

MongoDB Atlas | MongoDB

YADAX Blog

Blog - Yadax

https://www.mongodb.com/docs/
https://learn.mongodb.com/
https://www.mongodb.com/cloud/atlas/register
https://yadax.com.br/blog/

Dell Customer Communication - Confidential

© Copyright 2022 Dell Inc.© Copyright 2022 Dell Inc.

Q&A

Questions

humans?

LunaDBA

Oracle ACELinkdIn DBTips

Obrigado

Mario Barduchi
mario.barduchi@dell.com

Sr Database Systems Engineer – LATAM

mailto:mario.barduchi@dell.com

